$6 \cdot 2$
Change of variables formula
The substitution formula for functions of one variable is

$$
\int_{a}^{b} f(x(u)) \frac{d x}{d u} d u=\int_{x(a)}^{x(b)} f(x) d x
$$

Here x is expressed in terms of u so we have a function $x: R \rightarrow R$ which sends u to an expression $x(u)$, and also a function $f: R$ $\rightarrow R$ defined where the variable is called x.

$$
\mathbb{R} \xrightarrow{x} \mathbb{R} \xrightarrow{f} \mathbb{R}
$$

vanable 4 variable x

On the left we are integrating the composite function $f^{\circ} x$

Because x probably does not change at the same speed as u, we have to include a factor $\mathrm{dx} / \mathrm{du}$

Example:

$$
\begin{array}{ll}
\int_{0}^{2} 2 x e^{x^{2}} d x & \text { Put } u=x^{2} \\
d u=2 x d x \\
\text { we get } \int_{0}^{4} e^{u} d u=e^{4}-1
\end{array}
$$

In higher dimensions: the setup is a differentiable map T: D* -> D. We assume T is $1-1$ and $D=T\left(D^{*}\right)$. Then

$$
=\iint_{D^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

 value.

$$
T(u, v)=(x(u, v), y(u, v))
$$

Here $\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right]$
is the Jacobian $=\operatorname{det}$ of the
Jacobian matrix

Polar coordinates;
$\mathrm{T}: \mathrm{D}^{*}->\mathrm{D}$ is

$$
\begin{aligned}
& T(r, t)=(x(r, t), y(r, t))=(r \cos t, r \sin t) . \\
& \begin{aligned}
\frac{\partial(x, y)}{\partial(r, t)} & =\operatorname{det}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right] \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
\end{aligned}
\end{aligned}
$$

$$
\iint_{D} f(x, y)=\int_{D^{*}} f(r, \theta) r d r d \theta
$$

Pre-class Warm-up!!!
Let $T: R \wedge 2->R \wedge 2$ be the mapping $\mathrm{T}(\mathrm{u}, \mathrm{v})=(2 \mathrm{u}, 2 \mathrm{v})$ and write $(\mathrm{x}, \mathrm{y})=\mathrm{T}(\mathrm{u}, \mathrm{v})$. T maps the unit circle D^{*} in the (u, v)-plane to a circle D of radius 2 in the (x, y) plane.

Let $f: R \wedge 2 \rightarrow R$ be a function.
What is the relationship between

$$
\begin{aligned}
& \left.A=\iint_{D} f d x d y=\iint_{D^{*}} f_{0} T\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \right\rvert\, \\
& B=\iint_{D^{*}} f_{0} T d u d v=4 B
\end{aligned}
$$

Which of the following is true?
a. $A=4 B$

Example: Let $f(x, y)=1$ for all (x, y). Then $f(T(x, y))=1$
b. $A=2 B$ forallu,v.
C. $A=B$

$$
A=\text { Area of } D=4 B
$$

$B=$ Area of D^{*}
d. $A=B / 22 n d a p p r o a c h ~ \frac{\partial(x, y)}{\gamma(u, y)}=\operatorname{det}\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
e. $A=B / 4=4$

There will be no gaz tomorrow, or in the same week as Exam 3

Why does the change of variables formula work?

The integral of $F \cdot T$ over D^{*}
is approximated by the Riemann sum

$$
\sum f\left(T\left(u_{i} v_{i}\right)\right) \Delta u \Delta v
$$

$\iint_{D} f(x, y) d x d y$ is approximated by $\left.\sum_{\text {all parallegrams }} f\left(T_{i}^{i}, v_{i}\right)\right)($ area of $p g m)$ T (little square)

$$
\begin{aligned}
& =\sum_{\text {all pgms }} f(T(u, v,)) \Delta_{u} \Delta_{v} \frac{\partial(x, y)}{\partial(u, v)} \\
& \approx \iint_{D^{*}} f \circ T \frac{\partial(x, y)}{\partial(u, v)} d u d v
\end{aligned}
$$

Areas multiply by $\frac{\partial(x, y)}{\partial(u, v)}$ on applying
T.

Polar coordinates

$$
\iint f(x, y) d x d y=\iint f(r, \theta) r d r d \theta
$$

Under T the area $\Delta r \Delta \theta$ is sent to an area $r \operatorname{\Delta r} \Delta \theta$
This explains the formula.

Example: Find $\iint_{D} x^{2} y d x d y$
where D is the upper half of the unit disk

We use polar cords where $0 \leqslant r \leqslant 1$ $0 \leqslant \theta \leqslant \pi$ to get

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{1} r^{2} \cos ^{2} \theta r \sin \theta r d r d \theta \\
& \quad=\int_{0}^{\pi} \int_{0}^{1} r^{4} \cos ^{2} \theta \sin \theta d r d \theta \\
& =\int_{0}^{\pi}\left[\frac{r^{5}}{5} \cos ^{2} \theta \sin \theta\right]_{0}^{1} d \theta=\int_{0}^{\pi} \frac{\cos ^{2} \theta \sin \theta}{5} d \theta \\
& =\left[-\frac{\cos ^{3} \theta}{15}\right]_{0}^{\pi}=
\end{aligned}
$$

Example. Use the transformation $T(u, v)=((u+v) / 2,(u-v) / 2))$ to find

$$
\iint_{D}(x+y)^{2} d A
$$

Where D is the diamond

$$
x=(u+v) / 2 \quad y=\frac{u-v}{2}
$$

To find D^{*} we find T^{-1} by expressing
u, v interns of $x, y=u=x+y, v=x-y$

$$
\begin{aligned}
& \text { if }(x, y)=(1,0),(u, v)=(1,1) \text {, } \\
& \begin{array}{l}
\text { If }(x, y)=(0,1),(u, v)=(1,-1)^{\prime} \\
D^{*} \quad \prod_{-1}^{1}(1,1) \\
\left.=T^{-1}(D) \int_{-1}^{-1} f_{0} T \left\lvert\, \frac{\partial(x, y)}{\partial(u, v)}\right.\right) d u d v=\int_{-1}^{1} \int_{-1}^{1} u^{2} \cdot \frac{1}{2} d u d r
\end{array}
\end{aligned}
$$

Change of variables for cylindrical coordinates

$$
\begin{aligned}
& x=r \cos \theta \quad y=r \sin \theta \quad z=z \\
& \frac{\partial(x, y, z)}{\partial(r, \theta, z)}=\left|\operatorname{det}\left[\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\right| \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \quad s_{0} \\
& d x d y d z=r d r d \theta d z
\end{aligned}
$$

Find the volume bounded by

$$
z=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

And $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

Change of variables for spherical coordinates.
$x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi$

$$
\iiint f f d x d y d z=\iiint f \frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} d \rho d \theta d \phi
$$

$$
\left.\left.\frac{\partial\left(x y_{2}\right)}{\partial(\rho \theta \phi)}=\operatorname{det}\left[\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\sin \phi & 0 & -\rho \sin \phi
\end{array}\right] \right\rvert\,\right]
$$

$$
=\mid \cos \phi\left(-\rho^{2} \sin \phi \cos \phi \sin ^{2} \theta-p^{2} \sin \phi \cos \phi \cos ^{2} \theta\right)+\cdots
$$

$$
\approx\left|-\rho^{2} \sin \phi\right|=\rho^{2} \sin \phi
$$

$$
\iiint f d x d y d z=\iiint f p^{2} \sin \phi d p d \theta d \phi
$$

Find the volume bounded by

$$
z=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

and $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

$$
\begin{aligned}
& \iiint d V=\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& \quad=\left[\frac{\rho^{3}}{3}\right]_{0}^{1}[\theta]_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 4} \\
& \quad=\frac{1}{3} \cdot 2 \pi \cdot\left(1-\frac{1}{\sqrt{2}}\right)=\frac{\pi}{3}(2-\sqrt{2})
\end{aligned}
$$

Change of variables for spherical coordinates.
$x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta$
$z=\rho \cos \phi$
$\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}=\left|\begin{array}{ccc}\operatorname{det}\left[\begin{array}{ccc}\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \cos \phi & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\ \cos \theta & 0 & -\rho \sin \phi\end{array}\right]\end{array}\right|$

$$
=\mid \cos \phi\left(-\rho^{2} \sin \phi \cos \phi \sin ^{2} \theta-\rho^{2} \sin \phi \cos \phi \cos ^{2} \theta\right)
$$

$$
-\rho \sin \phi\left(\rho \sin ^{2} \phi \cos ^{2} \theta+\rho \sin ^{2} \phi \sin ^{2} \theta\right)
$$

$$
=\left|-p^{2} \sin \phi\left(\cos ^{2} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\sin ^{2} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right)\right|
$$

$$
\approx\left|-\rho^{2} \sin \phi\right|=\rho^{2} \sin \phi
$$

Thus

$$
d x d y d z=p^{2} \sin \phi d p d \theta d \phi
$$

Find the volume bounded by

$$
z=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

and $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

$$
\begin{aligned}
& \text { Volume } \iiint d x d y d z \\
& =\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left[\frac{\rho^{3}}{3}\right]_{0}^{1}[\theta]_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 4}=\frac{1}{3} \cdot 2 \pi \cdot\left(1-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

